Презентация радиационная безопасность населения
Радиационная безопасность - презентация, доклад, проект
Слайд 1
Биологическое действие радиации
Слайд 2
Радиоактивность это испускание ядрами некоторых элементов различных частиц, сопровождающееся переходом ядра в другое состояние и изменением его параметров. Явление радиоактивности было открыто французским ученым Анри Беккерелем в 1896 году для солей урана.
Слайд 3
В 1899 году под руководством английского ученого Эрнста Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.
Слайд 4
Излучение бывает -излучение -излучение -излучение
Слайд 5
ТРИ составляющие радиационного излучения Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м. Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц 20000 км/с, что превышает скорость современного самолета (1000 км/ч) в 72000 раз. Альфа – лучи проникают в воздух до 10 см. Гамма-излучение представляет собой электромагнитное излучение, испускаемое при ядерных превращениях или взаимодействии частиц
Слайд 6
Каждый тип излучения обладает своей проникающей способностью, то есть свободностью пройти сквозь вещество. Чем большей плотностью обладает вещество, тем хуже оно пропускает излучение.
Слайд 7
Альфа излучение Альфа излучение - обладает низкой проникающей способностью; - задерживается листом бумаги, одеждой, кожей человека; - попавшие альфа частицы внутрь организма, представляют большую опасность.
Слайд 8
-излучение По своим свойствам -частицы обладают малой проникающей способностью и не представляют опасности до тех пор, пока радиоактивные вещества, испускающие -частицы, не попадут внутрь организма через рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.
Слайд 9
Бета излучение Бета излучение - имеет гораздо большую проникающую способность; - может проходить в воздухе расстояние до 5 метров, способно проникать в ткани организма; - слой алюминия толщиной в несколько миллиметров способно задержать бета-частицы.
Слайд 10
-излучение -частицы могут проникать в ткани организма на глубину один – два сантиметра.
Слайд 11
Гамма излучение Гамма излучение - обладает ещё большой проникающей способностью; - задерживается толстым слоем свинца или бетона.
Слайд 12
-излучение Большой проникающей способностью обладает -излучение, которое распространяется со скоростью света; его может задержать лишь толстая свинцовая или бетонная плита.
Слайд 13
Основные понятия, термины и определения Радиация - это явление, происходящее в радиоактивных элементах, ядерных реакторах, при ядерных взрывах, сопровождающееся испусканием частиц и различными излучениями, в результате чего возникают вредные и опасные факторы, воздействующие на людей. Проникающая радиация следует понимать как поражающий фактор ионизирующих излучений, возникающих, например, при взрыве атомного реактора. Ионизирующее излучение - это любое излучение, вызывающее ионизацию среды, т.е. протекание электрических токов в этой среде, в том числе и в организме человека, что часто приводит к разрушению клеток, изменению состава крови, ожогам и другим тяжелым последствиям.
Слайд 14

Источники внешнего облучения Космические лучи (0,3 мЗв/год), дают чуть меньше половины всего внешнего облучения получаемого населением. Нахождение человека, чем выше поднимается он над уровнем моря, тем сильнее становится облучение. Земная радиация, исходит в основном от тех пород полезных ископаемых, которые содержат калий – 40, рубидий – 87, уран – 238, торий – 232.
Слайд 16
Внутреннее облучение населения Попадание в организм с пищей, водой, воздухом. Радиоактивный газ радон - он невидимый, не имеющий ни вкуса, ни запаха газ, который в 7,5 раз тяжелее воздуха. Глиноземы. Отходы промышленности, используемые в строительстве, например, кирпич из красной глины, доменный шлак, зольная При сжигании угля значительная часть его компонентов спекается в шлак, где концентрируются радиоактивные вещества.
Слайд 17
При работе с любым источником радиации необходимо принимать меры по радиационной защиты всех людей, могущих попасть в зону действия излучения. Человек с помощью органов чувств не способен обнаружить любые дозы радиоактивного излучения. Для обнаружения ионизирующих излучений, измерения их энергии и других свойств, применяются дозиметры
Слайд 18
Эквивалентная доза 1 Зв. = 1 Дж/кг Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиоактивную опасность для организма разных видов ионизирующего излучения.
Слайд 19
Эквивалентная доза излучения: Эквивалентная доза излучения: Н=Д*К К - коэффициент качества Д – поглощенная доза излучений
Слайд 20
Доза излучения поглощение Е ионизирующего излучения к массе вещества В СИ поглощённую дозу излучения выражают в грэях Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2*10 -3 Гр Доза излучения 3-10 Гр, полученная за короткое время, смертельна
Слайд 21
Воздействие ионизирующих излучений Любой вид ионизирующих излучений вызывает биологические изменения в организме. Однократное облучение вызывает биологические нарушения, которые зависят от суммарной поглощенной дозы. Так при дозе до 0,25 Гр. видимых нарушений нет, но уже при 4 – 5 Гр. смертельные случаи составляют 50% от общего числа пострадавших, а при 6 Гр. и более - 100% пострадавших.
Слайд 22
Механизм действия излучения: Механизм действия излучения: происходит ионизация атомов и молекул, что приводит к изменению химической активности клеток.
Слайд 23
В силу того, что при радиоактивном облучении биологическая поражаемость органов тела человека или отдельных систем организма неодинакова, их делят на группы: I (наиболее уязвимая) — все тело, гонады и красный костный мозг (кроветворная система); II — хрусталик глаза, щитовидная железа (эндокринная система), печень, почки, легкие, мышцы, жировая ткань, селезенка, желудочно-кишечный тракт, а также другие органы, которые не вошли в I и III группы; III— кожный покров, костная ткань, кисти, предплечья, стопы и голени.
Слайд 24
Чувствительность отдельных органов к радиоактивному излучению Чувствительность отдельных органов к радиоактивному излучению
Слайд 25
Радиоактивные излучения оказывают сильное биологическое действие на ткани живого организма, заключающееся в Радиоактивные излучения оказывают сильное биологическое действие на ткани живого организма, заключающееся в ионизации атомов и молекул среды
Слайд 26
Живая клетка - сложный механизм, не способный продолжать нормальную деятельность даже при малых повреждениях отдельных его участков. Даже слабые излучения могут нанести клеткам существенные повреждения и вызвать опасные заболевания (лучевая болезнь). При большой интенсивности излучения живые организмы погибают. Опасность излучения заключается в том, что они не вызывают никаких болевых ощущений даже при смертельных дозах. Живая клетка - сложный механизм, не способный продолжать нормальную деятельность даже при малых повреждениях отдельных его участков. Даже слабые излучения могут нанести клеткам существенные повреждения и вызвать опасные заболевания (лучевая болезнь). При большой интенсивности излучения живые организмы погибают. Опасность излучения заключается в том, что они не вызывают никаких болевых ощущений даже при смертельных дозах.
Слайд 27
Биологическое действие радиоактивных излучений Изменения клетки: - Разрушение хромосом - Нарушение способности к делению - Изменение проницаемости клеточных мембран - Разбухание ядер клеток
Слайд 28
Рак и наследственные болезни расцениваются как хронические последствия действия излучений
Слайд 29
Наиболее сильно радиация влияет на быстро растущие клетки – раковые
Слайд 30
Облучение может оказывать и определённую пользу Быстроразмножающиеся клетки в раковых опухолях более чувствительны к облучению. На этом основано подавление раковой опухали γ-лучами радиоактивных препаратов, которые для этой цели более эффективны, чем рентгеновские лучи
Слайд 31
Наиболее чувствительные к излучению ядра клеток: 1. Клетки костного мозга (нарушается процесс образования крови) 2. Поражение клеток пищеварительного тракта и др. органы
Слайд 32
Сильное влияние облучение оказывает на наследственность, поражая гены в хромосомах
Слайд 33
Генетические последствия радиации - проявляются в виде генных мутаций, а также изменения числа или структуры хромосом. Доза в 1 Гр, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных перестроек (аберраций) на каждый миллион живых новорожденных.
Слайд 34
Генетические нарушения в организме
Слайд 35
Генетические последствия радиации
Слайд 36










Ядерные взрывы Ядерные взрывы тоже вносят свой вклад в увеличение дозы облучения человека. Радиоактивные осадки от испытаний в атмосфере разносятся по всей планете, повышая общий уровень загрязненности. Всего ядерных испытаний в атмосфере произведено: Китаем – 193, СССР – 142, Францией – 45, США – 22, Великобританией – 21. После 1980 года взрывы в атмосфере практически прекратились. Подземные же испытания продолжаются до сих пор.
Слайд 47
Радиоактивные отходы РАО Отходы, содержащие радиоактивные изотопы химических элементов и не имеющие практической ценности. Это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается.
Слайд 48

Авария на Чернобыльской АЭС показала огромную опасность радиоактивных излучений. Все люди должны иметь представление об этой опасности и мерах защиты от неё.
Слайд 50
Катастрофа в Чернобыле показала человечеству, какую опасность хранит в себе атомная энергия
Слайд 51
Последствия аварии на Чернобыльской АЭС
Слайд 52
МАГАТЭ ( Международное агентство по атомной энергии) после аварии на Чернобыльской АЭС установило более строгие регламенты работ персонала АЭС
Слайд 53

Методы и средства защиты от ионизирующих излучений увеличение расстояния между оператором и источником; сокращение продолжительности работы в поле излучения; экранирование источника излучения; дистанционное управление; использование манипуляторов и роботов;
Слайд 55
Самый простой метод защиты – это удаление персонала от источника излучения на достаточно большое расстояние. Поэтому все объёмы с радиоактивными препаратами не следует брать руками. Нужно пользоваться специальными щипцами с длинной ручкой. Если удаление от источника излучения на достаточно большое расстояние не возможно. Используют для защиты от излучения преграды из поглощающих материалов.
Обеспечение радиационной безопасности населения - презентация, доклад, проект
Слайд 1
Подготовил ученик 8 В класса Крестинин Михаил
Слайд 2
Задание 1: установите соответствие
Слайд 3
Проверь себя!!!
Слайд 4
Задание 2. Оцените верность утверждений 1. Плотина - это искусственное водосбросовое сооружение. 2. Аварии на химически опасных объектах, в результате которых может произойти заражение воды, относятся к гидродинамическим. 3. Гидродинамические аварии могут возникнуть вследствие действия сил природы. 4. Бьеф – это часть водоема выше и ниже гидротехнического сооружения. 5. Водозаборные гидротехнические сооружения предназначены для забора воды из источника питания (реки, озера) с целью использования её для нужд гидроэнергетики, водоснабжения или орошения полей.
Слайд 5
Проверь себя!!! 1. НЕВЕРНО 2. НЕВЕРНО 3. ВЕРНО 4. ВЕРНО 5. ВЕРНО
Слайд 6
Радиационная безопасность населения Это состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего облучения
Слайд 7
Разработаны нормы радиационной безопасности (HPB-96/99), которые введены на территории России с 1 января 2000 г.
Слайд 8
Источники ионизирующих излучений
Слайд 9
Радон – главный из естественных источников радиации ФИЗИЧЕСКИЕ СВОЙСТВА Это газ без цвета, вкуса и запаха, в 7,5 раз тяжелее воздуха
Слайд 10
Воздействие на человека различных источников радиации
Слайд 11
Нормы радиационной безопасности
Слайд 12
Рекомендации населению Уточнить наличие в вашем районе РОО. Получить более подробную информацию о них. Выяснить способы и средства оповещения населения при аварии на РОО. Изучить инструкцию о порядке действий населения в случае возникновения радиационной аварии. Создать и иметь определенные запасы необходимых герметизирующих материалов, йодных препаратов, продовольствия и воды.
Слайд 13
Рекомендации населению
Слайд 14
Рекомендации населению Соберите самые необходимые вещи (документы, деньги, личные вещи, продукты, средства индивидуальной защиты). Необходимо сложить в чемодан и рюкзак одежду и обувь по сезону, однодневный запас продуктов, нижнее бельё и другие необходимые вещи. Оберните чемодан (рюкзак) полиэтиленовой пленкой. Покидая при эвакуации квартиру, отключите все электро- и газовые приборы, вынесите мусор, на дверь прикрепите объявление «В квартире №_ никого нет». Зарегистрируйтесь у председателя эвакокомиссии. Прибыв в безопасный район, примите душ и смените бельё и обувь.
Слайд 15
Для обеспечения радиационной безопасности населения в условиях развития ядерной энергетики необходимо повышение уровня знаний всего населения в вопросах понимания сущности физических и биологических процессов, связанных с ионизирующим излучением, а также знание нормативно-правовых актов и соблюдение норм поведения в области радиационной безопасности.
Радиационная защита Дозиметрия А. Н. Ялфимов Д. В. Жуков. - презентация
1 Радиационная защита Дозиметрия А. Н. Ялфимов Д. В. Жуков
2 Общие вопросы норм радиационной безопасности Нормы радиационной безопасности (НРБ-99) применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения. Нормы радиационной безопасности (НРБ-99) применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения. Нормы распространяются на следующие виды воздействия ионизирующего излучения на человека: Нормы распространяются на следующие виды воздействия ионизирующего излучения на человека: –в условиях нормальной эксплуатации техногенных источников излучения; –в условиях нормальной эксплуатации техногенных источников излучения; –в результате радиационной аварии; –в результате радиационной аварии; –от природных источников излучения; –от природных источников излучения; –при медицинском облучении. –при медицинском облучении.
3 Цели радиационной безопасности Главной целью радиационной безопасности является охрана здоровья населения, включая персонал, от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при использовании излучения в различных областях хозяйства, в науке и медицине. Главной целью радиационной безопасности является охрана здоровья населения, включая персонал, от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при использовании излучения в различных областях хозяйства, в науке и медицине. Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой дерматит, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни). Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой дерматит, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни).
4 Основные принципы Для обеспечения радиационной безопасности при нормальной эксплуатации источников излучения необходимо руководствоваться следующими основными принципами: Для обеспечения радиационной безопасности при нормальной эксплуатации источников излучения необходимо руководствоваться следующими основными принципами: –Непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников излучения (принцип нормирования); –Непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников излучения (принцип нормирования); –запрещение всех видов деятельности по использованию источников излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным облучением (принцип обоснования); –запрещение всех видов деятельности по использованию источников излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным облучением (принцип обоснования); –поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника излучения (принцип оптимизации). –поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника излучения (принцип оптимизации).
5 Нормативно-правовая база обеспечения радиационной безопасности (I) Федеральные законы Федеральные законы Об использовании атомной энергииОб использовании атомной энергии Настоящий Федеральный закон определяет правовую основу и принципы регулирования отношений, возникающих при использовании атомной энергии, направлен на защиту здоровья и жизни людей, охрану окружающей среды, защиту собственности при использовании атомной энергии, призван способствовать развитию атомной науки и техники, содействовать укреплению международного режима безопасного использования атомной энергии Настоящий Федеральный закон определяет правовую основу и принципы регулирования отношений, возникающих при использовании атомной энергии, направлен на защиту здоровья и жизни людей, охрану окружающей среды, защиту собственности при использовании атомной энергии, призван способствовать развитию атомной науки и техники, содействовать укреплению международного режима безопасного использования атомной энергии О радиационной безопасности населенияО радиационной безопасности населения Настоящий Федеральный закон определяет правовые основы обеспечения радиационной безопасности населения в целях охраны его здоровья Настоящий Федеральный закон определяет правовые основы обеспечения радиационной безопасности населения в целях охраны его здоровья О санитарно-эпидемиологическом благополучии населенияО санитарно-эпидемиологическом благополучии населения Настоящий Федеральный закон направлен на обеспечение санитарно- эпидемиологического благополучия населения как одного из основных условий реализации конституционных прав граждан на охрану здоровья и благоприятную окружающую среду Настоящий Федеральный закон направлен на обеспечение санитарно- эпидемиологического благополучия населения как одного из основных условий реализации конституционных прав граждан на охрану здоровья и благоприятную окружающую среду
6 Нормативно-правовая база обеспечения радиационной безопасности (II) Постановления правительства Российской Федерации Постановления правительства Российской Федерации Об утверждении Положения о лицензировании деятельности в области использования атомной энергииОб утверждении Положения о лицензировании деятельности в области использования атомной энергии Об утверждении перечня должностей работников объектов использования атомной энергии, которые должны получать разрешения Федерального надзора России по ядерной и радиационной безопасности на право ведения работ в области использования атомной энергииОб утверждении перечня должностей работников объектов использования атомной энергии, которые должны получать разрешения Федерального надзора России по ядерной и радиационной безопасности на право ведения работ в области использования атомной энергии О порядке разработки радиационно-гигиенических паспортов организаций и территорийО порядке разработки радиационно-гигиенических паспортов организаций и территорий
7 Нормативно-правовая база обеспечения радиационной безопасности (III) Постановления правительства Российской Федерации Постановления правительства Российской Федерации О перечне медицинских противопоказаний и перечне должностей, на которые распространяются данные противопоказания, а также о требованиях к проведению медицинских осмотров и психофизиологических обследований работников объектов использования атомной энергииО перечне медицинских противопоказаний и перечне должностей, на которые распространяются данные противопоказания, а также о требованиях к проведению медицинских осмотров и психофизиологических обследований работников объектов использования атомной энергии О правилах принятия решений о размещении и сооружении ядерных установок, радиационных источников и пунктов храненияО правилах принятия решений о размещении и сооружении ядерных установок, радиационных источников и пунктов хранения Об утверждении Правил организации системы государственного учета и контроля радиоактивных веществ и радиоактивных отходовОб утверждении Правил организации системы государственного учета и контроля радиоактивных веществ и радиоактивных отходов
8 Дозиметрия ионизирующих излучений Общие принципы и методы регистрации ионизирующих излучений Общие принципы и методы регистрации ионизирующих излучений Ионизирующим излучением (ИИ) считается любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков. Различают непосредственно ионизирующее излучение, состоящее из заряженных частиц с кинетической энергией, достаточной для создания ионизации при соударении, и косвенно ионизирующее излучение, состоящее из квантов и незаряженных частиц, взаимодействие которых со средой приводит к образованию непосредственно ионизирующего излучения. Источник излучения вещество или установка, при использовании которых возникают ионизирующие излучения. Ионизирующим излучением (ИИ) считается любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков. Различают непосредственно ионизирующее излучение, состоящее из заряженных частиц с кинетической энергией, достаточной для создания ионизации при соударении, и косвенно ионизирующее излучение, состоящее из квантов и незаряженных частиц, взаимодействие которых со средой приводит к образованию непосредственно ионизирующего излучения. Источник излучения вещество или установка, при использовании которых возникают ионизирующие излучения.
9 Аппаратура для регистрации ионизирующих излучений Дозиметры приборы, измеряющие экспозиционную или поглощенную дозу излучения или мощность этих доз, интенсивность излучения, перенос энергии или передачи энергии объекту, находящемуся в поле излучений. Дозиметры приборы, измеряющие экспозиционную или поглощенную дозу излучения или мощность этих доз, интенсивность излучения, перенос энергии или передачи энергии объекту, находящемуся в поле излучений. Радиометры приборы, измеряющие излучения для получения информации об активности нуклида в радиоактивном источнике, удельной, объемной активности, потоке ионизирующих частиц или квантов, радиоактивном загрязнении поверхностей, флюенсе ионизирующих частиц. Радиометры приборы, измеряющие излучения для получения информации об активности нуклида в радиоактивном источнике, удельной, объемной активности, потоке ионизирующих частиц или квантов, радиоактивном загрязнении поверхностей, флюенсе ионизирующих частиц. Спектрометры приборы, измеряющие распределение ионизирующих изучений по энергии, времени, массе и заряду элементарных частиц и т.д.; по одному и более параметрам, характеризующим поля ионизирующих излучений. Спектрометры приборы, измеряющие распределение ионизирующих изучений по энергии, времени, массе и заряду элементарных частиц и т.д.; по одному и более параметрам, характеризующим поля ионизирующих излучений. Универсальные приборы совмещают функции дозиметра и радиометра, радиометра и спектрометра и пр. Универсальные приборы совмещают функции дозиметра и радиометра, радиометра и спектрометра и пр.
10 Оценка стохастических эффектов Для оценки стохастических эффектов при облучении всего тела ввели новую эквидозиметрическую величину эффективный эквивалент дозы где взвешивающий коэффициент ткани/органа, отражающий его вклад в общее поражение организма. Единицей измерения эффективного эквивалента дозы также служит зиверт. Для оценки стохастических эффектов при облучении всего тела ввели новую эквидозиметрическую величину эффективный эквивалент дозы где взвешивающий коэффициент ткани/органа, отражающий его вклад в общее поражение организма. Единицей измерения эффективного эквивалента дозы также служит зиверт. Оценка распределения дозы от внешнего излучения по телу человека сложная задача. Ее решают с помощью фантомных измерений. Используют также математическое моделирование, применяя метод Монте- Карло, чтобы установить распределение дозы и состава излучения по организму облученного человека. Оценка распределения дозы от внешнего излучения по телу человека сложная задача. Ее решают с помощью фантомных измерений. Используют также математическое моделирование, применяя метод Монте- Карло, чтобы установить распределение дозы и состава излучения по организму облученного человека.
11 Система государственного учета и контроля РВ и РАО Государственный учет и контроль РВ и РАО осуществляется с целью: Государственный учет и контроль РВ и РАО осуществляется с целью: 1)определения наличного количества РВ и РАО в пунктах (местах) их нахождения, хранения и захоронения; 2) предотвращения потерь, несанкционированного использования и хищения РВ и РАО; 3) представления в установленном порядке органам государственной власти, органам государственного управления использованием атомной энергии, органам государственного регулирования безопасности при использовании атомной энергии, охраны окружающей среды соответствующей информации о наличии и перемещении РВ и РАО, включая их экспорт и импорт; 4) информационного обеспечения для принятия управленческих решений по обращению с РВ и РАО в интересах радиационной безопасности населения.
12 Список рекомендуемых учебных пособий [1]Кеирим-Маркус И. Б. Эквидозиметрия. М.: Атомиздат, [1]Кеирим-Маркус И. Б. Эквидозиметрия. М.: Атомиздат, [2]Козлов В. Ф. Справочник по радиационной безопасности. М.: Атомиздат, [2]Козлов В. Ф. Справочник по радиационной безопасности. М.: Атомиздат, [3]Радиационная биофизика (ионизирующие излучения) / Учеб. под ред. В. К. Мазурика, М. Ф. Ломанова. М.: Физматлит, [3]Радиационная биофизика (ионизирующие излучения) / Учеб. под ред. В. К. Мазурика, М. Ф. Ломанова. М.: Физматлит, [4]Ярмоненко С. П., Вайнсон А. А. Радиобиология человека и животных. М.: Высшая школа, [4]Ярмоненко С. П., Вайнсон А. А. Радиобиология человека и животных. М.: Высшая школа, 2004.
Ионизирующие излучения и радиационная защита
Cлайд 1

Cлайд 2

Cлайд 3

Cлайд 4

Cлайд 5

Cлайд 6

Cлайд 7

Cлайд 8

Cлайд 9

Cлайд 10

Cлайд 11

Cлайд 12

Cлайд 13

Cлайд 14

Cлайд 15

Cлайд 16

Cлайд 17

Cлайд 18

Cлайд 19

Cлайд 20

Cлайд 21

Cлайд 22

Cлайд 23

Cлайд 24

Cлайд 25

Cлайд 26

Cлайд 27

Cлайд 28

Cлайд 29

Cлайд 30

Cлайд 31

Cлайд 32

Cлайд 33

476074762647644476494765347656476664772147744477504777247817
Скачать эту презентацию