Коэффициент безопасности трансформаторов тока


Выбор измерительных трансформаторов

Реализуемая в Российской Федерации политика энергосбережения, а также растущая стоимость электрической энергии требуют все большей и большей эффективности ее учета. С этой целью создаются автоматизированные системы учета электроэнергии, в штат предприятий принимаются специалисты для их обслуживания. Для создания и эксплуатации таких систем требуются не только дополнительные капиталовложения, но и решение ряда технических задач, одна из которых будет рассмотрена в этой статье.

Низшим уровнем в иерархии автоматизированных систем учета является уровень информационно-измерительного комплекса (ИИК). Он включает в себя измерительные трансформаторы, счетчики электрической энергии, вторичные цепи измерительных трансформаторов. Очень важным на этапе построения ИИК является минимизация его погрешности, которая в большей мере зависит от правильного выбора измерительных трансформаторов тока (ТТ) и напряжения (ТН). Проблемы выбора ТН — отдельная тема, которая не затрагивается этим материалом. Стоит лишь отметить, что в отличие от ТТ их погрешности не зависят от изменяющейся нагрузки в контролируемой цепи. С ТТ все значительно сложнее.

Часто проектировщики и эксплуатирующие организации недостаточно серьезно относятся к выбору ТТ для учета. Выбирается ТТ с наилучшим классом точности, не заостряя внимания на других его параметрах. Так поступают будучи уверенными, что использование ТТ с наилучшим классом точности — уже экономия средств. Причиной этого является или неумение правильно выбрать ТТ, или желание сэкономить: устанавливаются трансформаторы тока имеющиеся в наличии, или выбираются ТТ, имеющие меньшую стоимость и более простые в установке, несмотря на ограниченность их метрологических характеристик. Результатом являются значительные финансовые потери, появляющиеся вследствие отсутствия точного учета.

Требования к применяемым в нашей стране трансформаторам тока регулирует ГОСТ7746-2001(1). В числе прочих характеристик этим стандартом задан ряд первичных токов и значения вторичных токов (1 и 5 А), с которыми ТТ могут быть изготовлены. Также регламентируются диапазоны измерений первичного тока, при которых должен быть сохранен класс точности: от 5–120% для классов точности 0,5 и 0,2, от 1–120% для классов 0,5S и 0,2S. Таким образом, классы точности с литерой «S» отличаются от прочих увеличенным диапазоном измерений в область минимальных значений (с 5% до 1%). Кроме того, существует требование ПУЭ (п.1.5.17) (2), согласно которому требуется выбирать коэффициент трансформации так, чтобы ток в максимальном режиме загрузки присоединения составлял не менее 40% тока счетчика, а в минимальном — не менее 5%. А ток счетчика, как правило, равняется вторичному току ТТ, поэтому, приведенное выше требование, можно смело отнести к обмотке учета измерительного трансформатора.

Стоит отметить, что требование к минимальному режиму идет вразрез с ГОСТ 7746, т.к. делает нецелесообразным применение ТТ классов точности с литерой «S». Что касается требования 40% в максимальном режиме то оно, вероятно, основано на стремлении минимизировать погрешности ТТ классов без «S» (см. рис. 1), в то время как для классов 0,2S и 0,5S целесообразнее было бы применять критерий «20%», в связи с ростом погрешностей при уменьшении первичного тока ниже этой величины (см. рис. 2).

Итак, при выборе коэффициента трансформации ТТ необходимо «убить двух зайцев»: не только «вписаться» в указанный ГОСТ7746-2001 диапазон,но и соблюсти требование ПУЭ.

Кроме того, фактическая нагрузка присоединения может быть значительно (в десятки и сотни раз) ниже его номинального тока, как часто случается в сетях распределительных компаний — сети были построены с учетом перспективы развития, которое так и не произошло. В таких случаях нужно обеспечить легитимный учет в области фактических нагрузок и предусмотреть возможность работы присоединения в режиме максимальной пропускной способности, чтобы в случае увеличения объемов транзита электрической энергии не пришлось менять ТТ. Использовать ТТ с завышенным коэффициентом экономически неэффективно, докажем это на конкретном примере. В расчет возьмем только токовую погрешность трансформатора тока, не принимая во внимание его угловую погрешность, а также погрешности других элементов измерительного комплекса — трансформаторов напряжения и счетчика. Имеем трансформатор тока класса точности 0,2S и коэффициентом трансформации обмотки учета 600/5. Используемая мощность силового трансформатора при напряжении 110 кВ равняется 10 000 кВА, cos ϕ равен 0,8. Фактический ток в первичной цепи равен 52,5 А, т.е. 8,75% от номинального первичного тока. Рассмотрим наихудший случай, когда при заданной нагрузке токовая погрешность будет равна крайнему значению — примерно 0,31% (см. рис. 2), количество неучтенной электрической энергии в год — 217 248 кВ*ч. Принимая стоимость одного киловатт-часа равной 1 руб., получаем неучтенной электроэнергии на сумму 217 248 руб. При погрешности 0,2 эта сумма составила бы 140 160 руб., т.е. в полтора раза или на 77 088 рублей меньше. В масштабах распределительных сетевых компаний такое количество неучтенной электроэнергии с каждого силового трансформатора может вылиться в кругленькую сумму. А если загрузка по первичной стороне трансформаторов тока будет еще меньше — цифры будут значительно внушительней, см. табл. 1.

Приведенная таблица применима для любого уровня напряжений, т.е. необходимо умножить используемую мощность на удельную величину, результатом будет являться годовое количество неучтенной электроэнергии в год, при заданной погрешности ТТ.

Таблица 1. Удельное количество неучтенной электрической энергии в год, в зависимости от погрешностей трансформатора тока классом точности 0,2S Первичный ток, % номинального значенияПогрешности ТТ класса 0,2S, %Удельное количество неучтенной э/э, кВт*ч в год
1 ±0,75 52,56
5 ±0,35 24,528
20    
100 ±0,2 14,016
120    

Задача обеспечения легитимного учета при малых и номинальных нагрузках присоединений решаема. Отечественной и зарубежной промышленностью производятся трансформаторы тока с расширенным диапазоном измерений — от 0,2 до 200% от номинального тока (увеличение диапазона измеряемых токов до 150 или 200% допускается международным стандартом IEС60044-1(3)). Зачастую такого диапазона измерений производителям удается достичь применением материалов с высокой магнитной проницаемостью — для изготовления сердечников используются нанокристаллические (аморфные) сплавы, но иногда и применения таких сплавов не требуется. Но существует проблема документального обеспечения улучшенных характеристик: производители при утверждении типа ТТ как средства измерения декларируют испытания на соответствие ГОСТ 7746, т.е. от 1 до 120%. Таким образом, расширенный диапазон номинального тока не подтверждается ничем, кроме заверений заводов-изготовителей. Поэтому, при применении таких ТТ следует убедиться, что расширенный диапазон измерений указан в описании типа и эксплуатационной документации. Следует еще раз отметить, что ГОСТ7746-2001 нерегламентирует погрешностей ТТ при токе свыше 120% номинального. О необходимости внесения в него изменений в части диапазонов первичных токов, расширения значений других параметров передовыми специалистами говорится уже несколько лет (4) и предлагается ввести новые классы точности, однако ГОСТ7746-2001 до настоящего времени применяется в неизменном виде.

Отдельно необходимо рассмотреть вопрос замены существующих ТТ. К выше обозначенной проблеме выбора коэффициента трансформации обмотки АИИС КУЭ прибавляется проблема сохранения коэффициентов трансформации других обмоток — к ним подключены существующие измерительные приборы, устройства противоаварийной автоматики, телемеханики и релейной защиты. Это, как правило, значительные по величине коэффициенты, определяемые максимальной пропускной способностью присоединений. Таким образом, требуются трансформаторы тока с различными коэффициентами трансформации обмоток АИИС КУЭ, измерений и РЗА. Необходимая кратность Ктт этих обмоток может составлять два, три и более. Такие трансформаторы производятся для уровней напряжений от 6 кВ и выше, но их ассортимент достаточно ограничен — чаще всего это ТТ с кратностью Ктт обмоток измерений и РЗА к Ктт обмотки учета равной двум. Это направление производителями освоено недостаточно, возможно ввиду традиционного подхода проектировщиков к выбору ТТ, хотя выгода при использовании таких ТТ налицо.

Производству ТТ с разными коэффициентами обмоток мешают проблемы, связанные с конструкцией ТТ: в связи с тем, что число первичных витков для всех обмоток одинаково, необходимый коэффициент каждой из обмоток достигается варьированием количества ее вторичных витков, как следствие размеры вторичных обмоток увеличиваются, и встает вопрос размещения их в габаритах корпуса трансформатора, а также достижения требуемой термической и динамической стойкости. К примеру, для трансформаторов тока напряжением 35 кВ и выше изготовление ТТ с различными коэффициентами трансформации возможно при количестве ампервитков измерительной обмотки, большем или равном 1200 (в редких случаях от 600 ампервитков).

Даже при наличии таких конструктивных сложностей, производителям удается изготавливать трансформаторы с кратными коэффициентами в широком диапазоне — от 50 до 3000 А. Сегодня предлагается в связи с появлением таких ТТ заменить термин «номинальный ток ТТ» на «номинальный первичный ток вторичной обмотки» (4).

Кроме ТТ с расширенным диапазоном и кратными коэффициентами трансформации, существуют ТТ с возможностью увеличения коэффициентов трансформации всех обмоток единовременно в два раза, путем изменения количества витков первичной обмотки. У ТТ с такой возможностью существует два первичных вывода, один из которых замыкает первичную обмотку на два витка, другой — на один. Когда замкнуты два витка, коэффициент трансформации понижен, при замыкании на один виток коэффициент трансформации увеличивается в два раза, в соответствии с известной формулой (8):

AW1=AW2

Производятся и ТТ, у которых коэффициенты трансформации обмоток изменяются по вторичной стороне, используя различное количество ампервитков вторичной обмотки — так называемые ТТ с отпайками. В настоящее время такие ТТ изготавливаются на напряжения от 10 кВ и выше, как с литой, так с масляной и элегазовой изоляцией.

Вторичные обмотки существующих ТТ очень часто перегружены. Значение мощности вторичной нагрузки может составлять 150, а то и 200–300% номинальной мощности, а разгрузка ТТ прокладкой новых вторичных цепей кабелем большего сечения не всегда решает задачу. Эта проблема актуальнее всего для обмоток измерений, так как требуется их значительная точность. Поэтому наряду с вышеописанными параметрами ТТ должны иметь достаточно большую номинальную мощность вторичных обмоток, а также возможность изготовления с несколькими измерительными обмотками — тогда мощность нагрузки, которую можно подключить к ТТ, увеличивается кратно количеству измерительных обмоток. Общее число измерительных и релейных обмоток тоже ограничивается конструктивными особенностями отдельных видов ТТ и чаще всего составляет от 1 до 6, в зависимости от уровня напряжения (но существуют и ТТ с количеством обмоток более 6). С ростом уровня напряжения увеличиваются габаритные размеры трансформатора — тем больше обмоток можно разместить внутри ТТ.

Также при замене ТТ необходимо учитывать, что коэффициент безопасности приборов должен быть как можно ниже, во избежание выхода из строя оборудования вторичных цепей при возникновении токов короткого замыкания. Это означает, что ток во вторичной цепи должен перестать расти раньше (сердечник должен насытиться), чем будут повреждены установленные во вторичных цепях приборы. Следует отметить, что несмотря на то, что зачастую производители ТТ декларируют возможность работы в классе точности даже при нулевой вторичной нагрузке, догрузка трансформаторов тока требуется, именно исходя из достижения требуемого коэффициента безопасности.

Опытным путем доказано, что при уменьшении вторичной нагрузки ТТ, его коэффициент безопасности увеличивается в несколько раз (5). Поэтому невозможно понять, на сколько же необходимо догрузить обмотку измерений ТТ для достижения требуемого коэффициента безопасности приборов. В связи с этим необходимо, чтобы изготовители ТТ на каждый производимый тип ТТ приводили кривую зависимости коэффициента безопасности от вторичной нагрузки, это требование тоже должно быть внесено в ГОСТ7746-2001. Сейчас можно рекомендовать догружать ТТ как минимум до нижнего предела загрузки, регулируемого ГОСТ7746-2001.

Номинальная предельная кратность обмоток, в свою очередь, должна быть выше кратности тока короткого замыкания и не ниже кратности существующего ТТ, для обеспечения нормальной работы существующих релейных защит. Не стоит забывать и о проверке на термическую и динамическую стойкость трансформаторов тока напряжением свыше 1 кВ, выполняемую по ГОСТ Р 52736-2007 (7) — трансформатор не должен выйти из строя при коротких замыканиях в электроустановке.

Какие же ТТ наиболее функциональны? Все зависит от задачи, которая решается при выборе измерительных трансформаторов. Если необходима организация как цепей учета, так и измерения, релейных защит, автоматики и пр. — целесообразно применять отдельно стоящие ТТ (рис. 3), так как их функционал гораздо более обширен, чем, например, у ТТ, устанавливаемых на ввод силового оборудования (встраиваемых) (рис. 4).

В частности, для уровня напряжения 110 кВ последние ограничены классами точности — для ТТ одного из ведущих отечественных производителей класс 0,2S, при вторичном токе 5 А достигается только при использовании трансформатора с номинальным первичным током от 600 А. Кроме того, если сравнить отдельно стоящий ТТ с встраиваемым по мощностям вторичных обмоток — встраиваемый также уступает. Поэтому, выгодно применять отдельно стоящие ТТ при решении комплексных задач по организации одновременно вторичных цепей учета, измерений и РЗА, а также при новом строительстве объектов, при установке ТТ только для организации учета и при условии наличия больших токов в первичной цепи — целесообразно применение встраиваемых ТТ.

Конечно, большую роль играет стоимость трансформаторов и их монтажа. Здесь однозначно лидирующими являются встраиваемые ТТ наружной установки. Они дешевле в изготовлении, при монтаже не требуют установки отдельных опорных конструкций, а также обслуживания в период эксплуатации, так как имеют литую изоляцию. Но стоит еще раз обратить внимание на ограниченность их применения и недостаточный функционал, по сравнению с отдельно стоящими ТТ.

Выводы

  1. При выборе ТТ необходимо учитывать соотношение номинального первичного тока обмотки учета и фактической нагрузки. Использование ТТ с большими номинальными первичными токами при значении фактических нагрузок присоединений менее 20% от номинального первичного тока ТТ экономически нецелесообразно и приводит к тому, что часть транзита электрической энергии не учитывается, это может повлечь финансовые потери.
  2. Производимые промышленностью измерительные трансформаторы могут обеспечить точный учет и в области минимальных нагрузок присоединений, и при максимальной пропускной способности линии, используя расширенный диапазон измерений от 1 до 200%, при условии документального подтверждения работы ТТ в классе точности в этом диапазоне.
  3. При замене существующих ТТ доступны ТТ с различными Ктт обмоток или ТТ с отпайками — таким образом будет обеспечиваться достаточная точность учета и сохранение существующих коэффициентов трансформации обмоток измерений и РЗА. Также можно использовать ТТ с изменяемым количеством первичных витков. При этом необходимо помнить, что при переключении изменяется Ктт всех обмоток одновременно.
  4. Номинальная мощность обмоток изготавливаемых в настоящее время трансформаторов тока достигает 50–60 ВА —этого, как правило, достаточно для работы в допустимых классах точности. Также возможно производство ТТ с увеличенным количеством обмоток измерений и/или РЗА.
  5. Необходимо выбирать ТТ с как можно более низким коэффициентом безопасности приборов. При не нужно забывать о догрузке вторичных обмоток — с уменьшением их загруженности увеличивается коэффициент безопасности. Кроме того, необходимо, чтобы производители ТТ декларировали для каждого типа зависимость коэффициента безопасности приборов от вторичной нагрузки.
  6. При замене ТТ необходимо следить за тем, чтобы номинальная предельная кратность обмоток РЗА была не менее кратности существующих ТТ и выше кратности токов КЗ. Также необходимо осуществлять проверку на термическую и динамическую стойкость.
  7. отдельно стоящие ТТ значительно функциональнее встраиваемых, поэтому их использование целесообразно при реконструкции распределительных устройств и новом строительстве. При установке ТТ только для учета и соблюдении условия наличия значительных токов в первичной цепи — возможно применение встраиваемых ТТ.

Используемая литература

  1. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
  2. Правила устройства электроустановок,7-еизд.
  3. IEС60044-1 «INTERNATIONAL STANDARD. Instrument transformers — Part 1: Current transformers».
  4. М. Зихерман «Стандарты по измерительным трансформаторам. Новые требования».
  5. Легостов В.В., Легостов В.В. «Измерительные трансформаторы тока», ИЗМЕРЕНИЕ.RU № 12 2’06.
  6. Афанасьев В.В., «Высоковольтные ТТ».
  7. ГОСТ Р 52736-2007 «Методы расчета термического и динамического действия тока короткого замыкания».
  8. Барзилович В.М., «Высоковольтные трансформаторы тока».

А. А. СЕРЯКОВ, главный инженер проекта Управления технического сопровождения

ООО «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ»

Выбор номинала трансформатора тока для релейной защиты (Страница 1) — Спрашивайте - отвечаем — Советы бывалого релейщика

1 Тема от ui9172 2013-04-02 08:56:09 (2013-04-02 09:30:14 отредактировано ui9172)

Здравствуйте, у меня в расчётах релейная защита построена на Sepam 2000.Ток срабатывания токовой отсечки (первичный) по расчётам получился 9900 А, номинальный рабочий ток линии - 70 А.Трансформатор тока 100/5 здесь ведь наверняка не пройдет - уставка получится 500 А, логично взять 300/5 - тогда уставка будет 165 А. Есть ли какие-нибудь ограничения по выбору номинала трансформатора тока относительно тока рабочего линии?

В терминалах сепам уставка задаётся от Iн - не могли бы вы объяснить механизм установки значений уставки в этих терминалах? Iн это номинальный ток линии или трансформатора тока?

2 Ответ от stoyan 2013-04-08 21:18:33

ui9172 пишет:

Ток срабатывания токовой отсечки (первичный) по расчётам получился 9900 А

ui9172 пишет:

Трансформатор тока 100/5

Насколько помню в защитах SEPAM можно настроить уставку по току до 24In. У вас получается в четыре раза больше. Еще надо проверить ТТ по нагрузке/насыщению.

3 Ответ от grsl 2013-04-08 21:39:14

максимально существующая уставка в МП защитах 40 номиналов.больше не видел и не слышал.

если нет  нужды в защите по перегрузке и нет учёта денежного, то нет проблем и в 500/5А

Добавлено: 08-04-2013 21:39:14

90Номиналов или почти 100, может и недоползти и в насыщение уйти.

4 Ответ от Сергей89 2013-04-08 21:51:30

Думаю, что при такой уставке отсечки, 9,9 кА (а ток КЗ, значит, и того больше), погрешность ТТ 100/5 уже превысит допустимую даже для Sepam

5 Ответ от Комрад 2013-04-08 22:18:56

Сергей89 пишет:

Думаю, что при такой уставке отсечки, 9,9 кА (а ток КЗ, значит, и того больше), погрешность ТТ 100/5 уже превысит допустимую даже для Sepam

К гадалке не ходи - расчетная кратность 99 должна быть!!!

3нание - столь драгоценная вещь, что его не зазорно добывать из любого источника.

6 Ответ от Макс 2013-04-09 08:26:20

А если вопрос в учёте то есть ТТ с разными коэффициентами трансформации 500/5 - на защиту, 100/5 в учёт.

7 Ответ от stoyan 2013-04-09 08:35:43

Макс пишет:

500/5 - на защиту

Тогда 9900/500=19,8 - проходит. Если учесть что у отсечки чувствительность должна быть не менее 1,2 (что означает ток к.з. порядка 12000А) то нужен ТТ класс 5(10)Р20.

8 Ответ от Shumakoff 2013-04-09 09:14:28 (2013-04-09 09:24:24 отредактировано Shumakoff)

В ГОСТе на ТТ есть требования к отношению реального тока к номинальному току ТТ, но только для учета, если мне не изменяет память. Следовательно для защиты можно и 300 и 500 Ампер взять.И ПУЭ, кстати, приказывает принимать коэффициент чувствительности равный 1,3 в случае с резервирующей ступенью, в остальных случаях 1,5. Про Кч = 1,2 ни слова.

9 Ответ от Комрад 2013-04-09 09:31:33

Shumakoff пишет:

В ГОСТе на ТТ есть требования к отношению реального тока к номинальному току ТТ, но только для учета, если мне не изменяет память.

Абсолютно верно. Для ТТ класса т. 0,5S допускается работа в классе тчоности при их загрузке первичным током не менее 20%. Для 5 и 10 Р загрузка первичным током не нормируется. Выбирать можно любой.

Shumakoff пишет:

И ПУЭ, кстати, приказывает принимать коэффициент чувствительности равный 1,3 в случае с резервирующей ступенью, в остальных случаях 1,5. Про Кч = 1,2 ни слова.

Неверно!!!ПУЭ 3.2.26. Для токовых отсечек без выдержки времени, устанавливаемых на линиях и выполняющих функции дополнительных защит, коэффициент чувствительности должен быть около 1,2 при КЗ в месте установки защиты в наиболее благоприятном по условию чувствительности режиме.

3нание - столь драгоценная вещь, что его не зазорно добывать из любого источника.

10 Ответ от Макс 2013-04-09 09:34:27 (2013-04-09 09:51:30 отредактировано Макс)

3.2.26. Для токовых отсечек без выдержки времени, устанавливаемых на линиях и выполняющих функции дополнительных защит, коэффициент чувствительности должен быть около 1,2 при КЗ в месте установки защиты в наиболее благоприятном по условию чувствительности режиме.

Извините похоже что почти одновременно посты послали.

Только для уставки 9900 А надо коэффициент предельной кратности обмотки защиты как можно больше выбирать. А так и выходит что если I1ном = 500 то K10ном = 20 должен быть (больше 20 я не встречал) и это при условии что Zвтор в пределах разумного.

11 Ответ от Комрад 2013-04-09 10:00:09

Макс пишет:

это при условии что Zвтор в пределах разумного.

Там же Sepam - нагрузка от него минимальная. И скорее всего у автора все смонтировано в КРУ - нагрузка от кабеля минимальная.

3нание - столь драгоценная вещь, что его не зазорно добывать из любого источника.

Все о трансформаторах тока. Классификация, конструкция, принцип действия

Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов до величин требуемых для подключения приборов измерения, устройств РЗиА.

Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

Конструкция и принцип действия трансформатора тока

Трансформаторы тока конструктивно состоят из:

  • замкнутого магнитопровода;
  • 2-х обмоток (первичной, вторичной).

Первичная обмотка включается последовательно, таким образом, сквозь нее протекает полный ток нагрузки. А вторичная — замыкается на нагрузку (защитные реле, расчетные счетчики и пр.), что позволяет создавать прохождение по ней тока, величина которого пропорциональна величине тока первичной обмотки.

Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.

Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

К этим обмоткам в обязательном порядке должна быть подключена нагрузка.

Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

Интересное видео о трансформаторах тока смотрите ниже:

Погрешность ТТ определяется в зависимости от:

  • сечения магнитопровода;
  • проницаемости используемого для производства магнитопровода материала;
  • величины магнитного пути.

Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.

Предельное значение сопротивление нагрузки указывается в справочных материалах.

Классификация трансформаторов тока

Трансформаторы тока принято классифицировать по следующим признакам:

  1. В зависимости от назначения их разделяют на:
    1. защитные;
    2. измерительные;
    3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
    4. лабораторные.
  2. По типу установки разделяют устройства:
    1. наружной установки (размещаемые в ОРУ);
    2. внутренней установки (размещаемые в ЗРУ);
    3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
    4. накладные — устанавливаемые сверху на проходные изоляторы;
    5. переносные (для лабораторных испытаний и диагностических измерений).
  3. Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
    1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
    2. одновитковые;
    3. шинные.
  4. По способу исполнения изоляции ТТ разбивают на устройства:
    1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
    2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
    3. имеющие заливку из компаунда.
  5. По количеству ступеней трансформации ТТ бывают:
    1. одноступенчатые;
    2. двухступенчатые (каскадные).
  6. Исходя из номинального напряжения различают:
    1. ТТ с номинальным напряжением — выше 1 кВ;
    2. ТТ с напряжением – до 1 кВ.

Ещё одно интересное видео о схемах включения трансформаторов тока:

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:
  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.
Пример условного обозначения опорного трансформатора тока с литой изоляцией

ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

  • 10 — номинальное напряжение;
  • «0» — конструктивный вариант исполнения;
  • «1» — исполнение по длине корпуса;
  • «А» — вторичные выводы расположенные параллельно установочной поверхности;
  • «Б» — изолирующие барьеры;
  • 0,5S — класс точности измерительной вторичной обмотки;
  • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
  • 10Р — класс точности защитной вторичной обмотки;
  • 10 — номинальная предельная кратность вторичной обмотки для защиты;
  • 5 — номинальная вторичная нагрузка обмотки для измерения;
  • 15 — номинальная вторичная нагрузка обмотки для защиты;
  • 300 — номинальный первичный ток;
  • 5 — номинальный вторичный ток;
  • 31,5 — односекундный ток термической стойкости;
  • «УХЛ» — климатическое исполнение;
  • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

Опорные трансформаторы тока TОП-0,66

ОАО «СЗТТ»

Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.

Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

  • высота над уровнем моря не более 1000 м;
  • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
  • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
  • рабочее положение — любое.

Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.

Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Изготовитель — Фирма ООО «ABB»

Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

  • МЭК, VDE, ANSI, BS, ГОСТ и CSN.
  • Максимальное напряжение — 3.6 кВ — 25 кВ
  • Первичный ток — 600 A – 5000 A
  • Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
  • Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
  • Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.

Трансформатор тока

Доброе время суток, дорогие друзья!

Вот и пришел новый 2015 год. Надеюсь, что этот год будет не хуже предыдущего. В общем, с Новым Годом, друзья!

Хочу начать год со статьи о трансформаторах тока. Конечно, мой рассказ будет скорее общим, чем научным.

Для досконального изучения вопроса предлагаю воспользоваться технической литературой или хотя бы ИНСТРУКЦИУЙ ПО ПРОВЕРКЕ ТРАНСФОРМАТОРОВ ТОКА, ИСПОЛЬЗУЕМЫХ В СХЕМАХ РЕЛЕЙНОЙ ЗАЩИТЫ И ИЗМЕРЕНИЯ (РД 153-34.0-35.301-2002).

Итак, приступим.

Простейший и самый распространенный трансформатор тока (ТТ) — двухобмоточный. Он имеет одну первичную обмотку с числом витков w1 и одну вторичную обмотку с числом витков w2. Обмотки находятся на общем магнитопроводе, благодаря которому между ними существует хорошая электромагнитная (индуктивная) связь.

Первичная обмотка, изолированная от вторичной обмотки на полное рабочее напряжение аппарата, включается последовательно в рассечку цепи контролируемого первичного тока, а вторичная обмотка замыкается на нагрузку (измерительные приборы и реле), обеспечивая в ней протекание вторичного тока, практически пропорционального переменному первичному току. Чем меньше полное сопротивление нагрузки zн и полное сопротивление вторичной обмотки zT2, тем точнее соблюдается пропорциональность между первичным и вторичным токами, т.е. тем меньше погрешности ТТ. Идеальный режим работы ТТ — это режим КЗ вторичной обмотки. Один вывод вторичной обмотки обычно заземляется, поэтому он имеет потенциал, близкий к потенциалу контура заземления электроустановки.

Вот внешний вид ТТ до 1000 В:

А вот внешний вид ТТ выше 1000 В:

Трансформаторы тока для защиты предназначены для передачи измерительной информации о первичных токах в устройства защиты и автоматики. При этом они обеспечивают:

1) масштабное преобразование переменного тока различной силы в переменный вторичный ток приемлемой силы (чаще всего это 1 или 5А) для питания устройств релейной защиты;

2) изолирование вторичных цепей и реле, к которым имеет доступ обслуживающий персонал, от цепей высокого напряжения. Аналогичные функции выполняют и ТТ для измерений, предназначенные для передачи информации измерительным приборам.

Между ТТ для защиты и для измерений нет принципиальной разницы. Существующие различия заключаются в неодинаковых требованиях к точности и к диапазонам первичного тока, в которых погрешности ТТ не должны превышать допустимых значений. К ТТ для измерений предъявляется требование ограничения сверху действующего значения вторичного тока при протекании тока КЗ по первичной обмотке, для них устанавливается номинальный коэффициент безопасности приборов. Это требование не предъявляется к ТТ для защиты, которые должны обеспечивать необходимую точность трансформации тока и при КЗ. Номинальный коэффициент безопасности фактически является верхним пределом для номинальной предельной кратности ТТ для измерений. Поэтому в стандартах некоторых стран (например, в германских правилах VDE 0414 «Regeln für Meßwandler») для всех ТТ нормируется номинальная предельная кратность (Nenn Überstromziffer «n»), причем ее ограничение для измерительных ТТ задается в форме n < …, а для трансформаторов тока для защиты в форме n >… .

При анализе явлений в ТТ необходимо учитывать положительные направления первичного и вторичного токов в соответствующих обмотках, а также ЭДС, индуктируемой во вторичной обмотке, от которых зависят знаки (плюс или минус) в формулах и углы векторов на векторных диаграммах.

В технике релейной защиты приняты положительные направления для токов и ЭДС, показанные на рисунке 1. Звездочками отмечены однополярные зажимы обмоток, например их начала, которые по ГОСТ обозначаются символами Л1 у первичной обмотки и И1 у вторичной обмотки.

а) б) в)

а, б — схемы условных обозначении; в — схема замещения

Рисунок 1 — Схемы ТТ

Приняты положительными: направление для первичного тока от начала к концу первичной обмотки и направление для вторичного тока от начала вторичной обмотки (по внешней цепи нагрузки) к концу вторичной обмотки, соответственно этому внутри вторичной обмотки — направление вторичного тока и вторичной ЭДС (от конца к началу обмотки).

При указанных положительных направлениях векторы первичного и вторичного токов совпадают по фазе при отсутствии угловой погрешности, а мгновенная вторичная ЭДС равна взятой со знаком «плюс» первой производной по времени от потокосцепления вторичной обмотки.

По причине существенной нелинейности характеристики намагничивания ферромагнитного магнитопровода к анализу явлений в ТТ неприменим принцип наложения (суперпозиции). Даже при номинальном первичном токе и номинальной нагрузке индукция в магнитопроводе не равна разности индукций, которые были бы созданы отдельно взятыми первичным и вторичным токами. Результирующий магнитный поток в магнитопроводе ТТ определяется только совместным одновременным действием первичного и вторичного токов и даже гипотетически не может корректно рассматриваться как разность потоков, раздельно созданных первичным и вторичным токами.

Классификация ТТ

По ГОСТ 7746-89 ТТ подразделяются по следующим основным признакам:

— по роду установки:

для работы на открытом воздухе (категория размещения 1 по ГОСТ 15150-69 [22]);

для работы в закрытых помещениях (категории размещения 3 и 4 по ГОСТ 15150-69);

для работы в подземных установках (категория размещения 5 по ГОСТ 15150-69);

для работы внутри оболочек электрооборудования

— по принципу конструкции: опорные (О), проходные (П), шинные (Ш), встроенные (В), разъемные (Р). Допускается по ГОСТ 7746-89 [14] сочетание нескольких перечисленных принципов, а также конструктивное исполнение, не подпадающее под перечисленные признаки;

— по виду изоляции: с литой изоляцией (Л), с фарфоровой покрышкой (Ф), с твердой изоляцией (кроме фарфоровой и литой) (Т), маслонаполненные (М), газонаполненные (Г);

— по числу ступеней трансформации: одноступенчатые и каскадные;

— по числу магнитопроводов со вторичными обмотками, называемых кернами, объединенных общей первичной обмоткой: с одним керном, с несколькими кернами;

— по назначению кернов: для измерения, для защиты, для измерения и защиты, для работы с нормированной точностью в переходных режимах;

— по числу коэффициентов трансформации: с одним коэффициентом трансформации; с несколькими коэффициентами трансформации, получаемыми путем изменения числа витков первичной или(и) вторичной обмоток, а также путем применения вторичных обмоток с отпайками.

Структура условного обозначения ТТ по ГОСТ 7746-89

В стандартах на трансформаторы отдельных видов ГОСТ 7746-89 [14] допускает ввод в буквенную часть обозначения дополнительных букв. Допускается исключение или замена отдельных букв, кроме Т, для обозначения особенностей конкретного ТТ.

Основные (номинальные) параметры ТТ

По ГОСТ 7746-89 к номинальным параметрам ТТ относятся:

— номинальное напряжение ТТ Uном — номинальное напряжение цепей, для которых предназначен данный аппарат. Встроенные ТТ не имеют паспортного параметра номинального напряжения;

— номинальный первичный ток ТТ I1ном;

— номинальный вторичный ток ТТ I2ном;

— номинальный коэффициент трансформации ТТ (коэффициент трансформации – отношение первичного номинального тока ко вторичному. Обычно записывается, например, 150/5 и тогда равен 30, т.е. при любом первичном токе вторичный будет в тридцать раз меньше);

— номинальная вторичная нагрузка с номинальным коэффициентом мощности cosj (1 или 0,8 индуктивный). Обозначается zн. ном (сопротивление нагрузки) или Sн. ном (номинальная мощность нагрузки);

— номинальный класс точности ТТ (керна для ТТ с несколькими кернами) (обычно для измерений класс точности не хуже 0,5, а для систем РЗиА не хуже 10);

— номинальная предельная кратность ТТ, обслуживающего релейную защиту — К10ном, К5ном;

— номинальный коэффициент безопасности для приборов — Кd ном;

— номинальная частота ТТ — fном.

 Испытания измерительных трансформаторов тока.

Объектом испытания в измерительных трансформаторах тока и напряжения являются, прежде всего, изоляция трансформаторов, обмотки трансформаторов как первичная, так и вторичная, а также трансформаторное железо сердечника.

Трансформаторы тока изготавливаются со следующим исполнением внутренней изоляции:

· Бумажно-бакелитовая (трансформаторы серии ТП 6-35кВ); керамическая (трансформаторы тока 6-10кВ типов ТПОФ, ТПФ и др).

· Литая эпоксидная (трансформаторы тока типов ТПОЛ, ТПШЛ, ТШЛ и др. 6-35кВ).

Объём испытаний трансформаторов тока:

1) измерение сопротивления изоляции первичной и вторичной (вторичных) обмоток (К, М)

2) испытание повышенным напряжением изоляции обмоток (М)

3) снятие характеристик намагничивания трансформаторов (К)

4) измерение коэффициента трансформации (К).

Примечание: К – капитальный ремонт, испытание при приёмке в эксплуатацию; М – межремонтные испытания

Сопротивление изоляции.

В процессе эксплуатации измерения проводятся:

на трансформаторах тока 3-35кВ – при ремонтных работах в ячейках (присоединениях), где они установлены.

Измеренные значения сопротивления изоляции должны быть не менее значений, приведённых в таблице 1.

для трансформаторов напряжения 3-35кВ – при проведении ремонтных работ в ячейках, где они установлены, если работы не проводятся – не реже 1 раза в 4 года.

 Испытание повышенным напряжением.

Значения испытательного напряжения основной изоляции трансформаторов тока и напряжения приведены в таблице 2. Длительность испытания трансформаторов тока и напряжения с фарфоровой изоляцией – 1 минута, с органической изоляцией – 5 минут.

Допускается проведение испытаний трансформаторов тока совместно с ошиновкой. При совместном испытании измерительных трансформаторов с элементами ошиновки или другими аппаратами, продолжительность испытания принимается равной времени испытания для тех элементов сети, к которым подключены трансформаторы. Например, при испытании трансформаторов тока установленных в ячейке КРУ продолжительность испытания устанавливается равной 1 минуте (изоляторы ошиновки ячейки – фарфоровые).

Значение испытательного напряжения для изоляции вторичных обмоток, вместе с присоединёнными к ним цепями, принимается равным 1кВ.

Продолжительность приложения испытательного напряжения – 1 минута.

Измерение сопротивления обмоток постоянному току.

Отклонение измеренного сопротивления обмотки постоянному току от паспортных значений, или от измеренных на других фазах не должно превышать 2%. При сравнении измеренных значений с паспортными данными измеренные значения сопротивления должны приводиться к заводской температуре. При сравнении с другими фазами измерения должны производиться при одинаковой температуре.

Измерения сопротивления обмоток постоянному току производятся у трансформаторов тока на напряжение 110кВ и выше и у связующих обмоток каскадных трансформаторов напряжения.

В качестве дополнительных измерений при комплексных испытаниях данный вид измерения может использоваться и для трансформаторов тока и напряжения всех типономиналов.

 Измерение коэффициента трансформации.

Отклонение измеренного коэффициента трансформации от указанного в паспорте или от измеренного на исправном трансформаторе тока или напряжения, однотипном с проверяемыми, не должно превышать 2%.

Для проверки коэффициента трансформации трансформаторов тока собирают схему, представленную на рисунке 8. У встроенных трансформаторов тока коэффициент трансформации проверяется только на рабочих ответвлениях — остальные части обмоток не проверяются.

Ток в первичной цепи трансформатора пропорционален току во вторичной цепи. Коэффициент пропорциональности токов и будет искомым коэффициентом трансформации.

Разделительный трансформатор создаёт на своей вторичной обмотке напряжение порядка 5В и ток прядка 1000А (в зависимости от испытуемого трансформатора тока).

Снятие характеристик намагничивания трансформаторов тока.

Характеристика снимается методом повышения напряжения на вторичных обмотках до начала насыщения (но не выше 1800В), с одновременным измерением тока в испытуемой обмотке с помощью амперметра.

При наличии у обмоток ответвлений характеристика снимается на рабочем ответвлении, при этом на нерабочих ответвлениях замеры не производятся.

Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных трансформаторов тока, однотипных с проверяемыми.

Отличия от значений, измеренных на заводе-изготовителе или от измеренных на исправном трансформаторе тока, однотипном с проверяемыми, не должны превышать 10%.

Характеристики намагничивания снимаются для проверки исправности трансформаторов тока. При этом убеждаются в том, что нет накоротко замкнутых витков и повреждения сердечника, оцениваются возможности использования трансформатора в схеме релейной защиты в конкретных условиях.

Характеристика намагничивания представляет собой зависимость подводимого ко вторичной обмотке напряжения от тока в этой обмотке. Схема для снятия характеристики намагничивания представлена на рисунке 7.

Характеристику намагничивания снимают до номинального тока трансформатора (тока вторичной обмотки), в тех случаях, если это требуется (для особо ответственных трансформаторов) характеристику снимают до начала насыщения трансформатора тока (для 5-амперных трансформаторов – до достижения тока 10А).

Если при снятии характеристики необходимо напряжение выше 250В используют повышающие трансформаторы с более высоким напряжением.

Вольт-амперная характеристика является основной при оценке исправности ТТ. Используются такие характеристики и для определения погрешностей ТТ.

Наиболее распространенная неисправность ТТ — витковое замыкание — выявляется по резкому снижению ВАХ и изменению ее крутизны. Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных ТТ, однотипных с проверяемым, чаще всего с характеристиками ТТ других фаз того же присоединения. Для такого сравнения достаточно совпадения характеристик с точностью в пределах их заводского разброса.

а)                                                                     б)

а — ТТ ТВ-35, 300/5 А; б — ТТ ТВД-500, 2000/1;

1 — исправный трансформатор тока; 2 — закорочен один виток;

3 — закорочены два витка; 4 — закорочены восемь витков

Рисунок. Вольт-амперные характеристики при витковых замыканиях во вторичной обмотке

На этом у меня на сегодня все.

Будут вопросы, постараюсь на них ответить.

Успехов.


Смотрите также